欢迎光临 江阴通达气体 (Www.jytdqt.Com ) 官网!
通达气体工业气体特种气体构建新机制、拓宽新视眼、应对新挑战; 再创新辉煌、质量无投诉、安全百分百。
全国咨询热线:0510-86307432

稀有气体 - 通达气体带你一起了解它们

时间:2020-09-16 18:08 来源:通达气体 点击:

 

历史上稀有气体曾被称为“惰性气体”,这是因为它们的原子最外层电子构型除氦为1s外,其余均为8电子构型(ns2np6,均为上标),而这两种构型均为稳定的结构。因此,稀有气体的化学性质很不活泼,所以过去人们曾认为他们与其他元素之间不会发生化学反应,称之为“惰性气体”。然而正是这种绝对的概念束缚了人们的思想,阻碍了对稀有气体化合物的研究。1962年,在加拿大工作的26岁的英国青年化学家N.Bartlett合成了第一个稀有气体化合物Xe[PtF6],引起了化学界的很大兴趣和重视。许多化学家竞相开展这方面的工作,先后陆续合成了多种“稀有气体化合物”,促进了稀有气体化学的发展。而“惰性气体”一名也不再符合事实,故改称稀有气体。  通电的稀有气体放电管发现史1868年,天文学家在太阳的光谱中发现一条特殊的黄色谱线D3,这和早已知道的钠元素的D1和D2两条黄色谱线不同,由此预言在太阳中可能有一种未知元素存在。后来将这种元素命名为“氦”,意为“太阳元素”[1]。
 

20多年后,拉姆赛证实了地球上也存在氦元素。1895年,美国地质学家希尔布兰德观察到钇铀矿放在硫酸中加热会产生一种不能自燃、也不能助燃的气体。他认为这种气体可能是氮气或氩气,但没有继续研究。拉姆赛知道这一实验后,用钇铀矿重复了这一实验,得到少量气体。在用光谱分析法检验该气体时,原以为能看到氩的谱线,却意外地发现一条黄线和几条微弱的其他颜色的亮线。拉姆赛把它与已知的谱线对照,没有一种同它相似。经过苦苦思索,终于想起27年前发现的太阳上的氦。氦的光谱正是黄线,如果这两条黄线能够重合,那么钇铀矿中放出的气体应是太阳元素氦了。拉姆赛十分谨慎,请当时英国最著名的光谱专家克鲁克斯帮助检验,证实拉姆赛所得的未知气体即为“太阳元素”气体。1895年3月,拉姆赛在《化学新闻》上首先发表了在地球上发现氦的简报,同年在英国化学年会上正式宣布这一发现。后来,人们在大气中、水中、天然气中、石油气中以及铀和外的矿石中,甚至在陨石中也发现了氦。1902年,德米特里·门捷列夫接受了氦和氩元素的发现,并这些稀有气体纳入他的元素排列之内,分类为第0族,而元素周期表即从该排列演变而来[2]。
 

拉姆齐继续使用分馏法把液态空气分离成不同的成分以寻找其他的稀有气体。他于1898年发现了三种新元素:氪、氖和氙。“氪”源自希腊语“κρυπτ(kruptós)”,意为“隐藏”;“氖”源自希腊语“νο(néos)”,意为“新”;“氙”源自希腊语“ξνο(xénos)”,意为“陌生人”。氡气于1898年由弗里德里希·厄恩斯特·当发现,最初取名为镭放射物,但当时并未列为稀有气体[3]。直到1904年才发现它的特性与其他稀有气体相似。1904年,瑞利和拉姆齐分别获得诺贝尔物理学奖和化学奖,以表彰他们在稀有气体领域的发现[4]。瑞典皇家科学院主席西德布洛姆致词说:“即使前人未能确认该族中任何一个元素,却依然能发现一个新的元素族,这是在化学历史上独一无二的,对科学发展有本质上的特殊意义。
 

在1895年,法国化学家亨利·莫瓦桑尝试进行氟(电负性最高的元素)与氩(稀有气体)之间的反应,但没有成功。直到20世纪末,科学家仍无法制备出氩的化合物,但这些尝试有助于发展新的原子结构理论。由这些实验结果,丹麦物理学家尼尔斯·玻尔在1913年提出,在原子中的电子以电子层形式围绕原子核排列,除了氦气以外的所有稀有气体元素的最外层的电子层总是包含8个电子。1916年,吉尔伯特·牛顿·路易斯制定了八隅体规则,指出最外电子层上有8个电子是任何原子最稳定的排布;此电子排布使它们不会与其他元素发生反应,因为它们不需要更多的电子以填满其最外层电子层。

但到了1962年,尼尔·巴特利特发现了首个稀有气体化合物六氟合铂酸氙。其他稀有气体化合物随后陆续被发现:在1962年发现了氡的化合物二氟化氡;并于1963年发现氪的化合物二氟化氪。2000年,第一种稳定的氩化合物氟氩化氢(HArF)在40K(-233.2℃)下成功制备。
 

1998年12月,俄罗斯杜布纳的联合核研究所的科学家以钙原子轰击钚来产生114号元素的单一原子,后来被命名为Fl。初步化学实验已显示该元素可能是第一种超重元素,尽管它位于元素周期表的第14族,却有着的稀有气体特性。2006年10月,联合核研究所与美国劳伦斯利福摩尔国家实验室的科学家成功地以钙原子轰击锎的方法,人工合成了Uuo,它是18族的第七个元素[6]。
 

化合物芬兰赫尔辛基大学的科学家在24日出版的英国《自然》杂志上报告说,他们首次合成了惰性气体元素氩的稳定化合物——氟氩化氢,分子式为HArF。

这样,6种惰性气体元素氦、氖、氩、氪、氙和氡中,就只有原子量最小的氦和氖尚未被合成稳定化合物了。惰性气体可广泛应用于工业、医疗、光学应用等领域,合成惰性气体稳定化合物有助于科学家进一步研究惰性气体的化学性质及其应用技术。

在惰性气体元素的原子中,电子在各个电子层中的排列,刚好达到稳定数目。因此原子不容易失去或得到电子,也就很难与其它物质发生化学反应,因此这些元素被称为“惰性气体元素”。

在原子量较大、电子数较多的惰性气体原子中,最外层的电子离原子核较远,所受的束缚相对较弱。如果遇到吸引电子强的其他原子,这些最外层电子就会失去,从而发生化学反应。1962年,加拿大化学家首次合成了氙和氟的化合物。此后,氡和氪各自的化合物也出现了。

原子越小,电子所受约束越强,元素的“惰性”也越强,因此合成氦、氖和氩的化合物更加困难。赫尔辛基大学的科学家使用一种新技术,使氩与氟化氢在特定条件下发生反应,形成了氟氩化氢。它在低温下是一种固态稳定物质,遇热又会分解成氩和氟化氢。科学家认为,使用这种新技术,也可望分别制取出氦和氖的稳定化合物。

自19世纪末以来,稀有气体元素不能生成热力学稳定化合物的结论给科学家人为地划定了一个禁区,致使绝大多数化学家不愿再涉猎这一被认为是荒凉贫瘠的不毛之地,关于稀有气体化学性质的研究被忽略了。尽管如此,仍有少数化学家试图合成稀有气体化合物。1932年,前苏联的阿因托波夫(A.R.Antropoff)曾报道,他在液体空气冷却器内,用放电法使氪与氯、溴反应,制得了较氯易挥发的暗红色物质,并认为是氪的卤化物。但当有人采用他的方法重复实验时却未获成功。阿因托波夫就此否定了自己的报道,认为所谓氪的卤化物实际上是氧化氮和卤化氢,并非氪的卤化物。1933年,美国著名化学家鲍林(L.Pauling)通过对离子半径的计算,曾预言可以制得六氟化氙(XeF)、六氟化氪(KrF6)、氙酸及其盐。扬斯特(D.M.Younst)受阿因托波夫的第一个报道和鲍林预言的启发,用紫外线照射和放电法试图合成氟化氙和氯化氙,均未成功。他在放电法合成氟化氙的实验中将氟和氙按一定比例混合后,在铜电极间施以30000伏的电压,进行火花放电,但未能检验出氟化氙的生成。扬斯特由于对传统观念心有余悸,没有坚持继续进行实验,使一个极有希望的方法半途而废。一系列的失败,致使在以后的30多年中很少有人再涉足这一领域。令人遗憾的是,到了1961年,鲍林也否定了自己原来的预言,认为“氙在化学上是完全不反应的,它无论如何都不能生成通常含有共价键或离子键化合物的能力”。

历史的发展颇具戏剧性,就在鲍林否定其预言的第二年,第一个稀有气体化合物——六氟合铂酸氙(XePtF6)竟奇迹般地出现了,并以它独特的经历和风姿震惊了整个化学界,标志着稀有气体化学的建立,开创了稀有气体化学研究的崭新领域。

在加拿大工作的英国年轻化学家巴特列特(N.Bartlett)一直从事无机氟化学的研究。自1960年以来,文献上报道了数种新的铂族金属氟化物,它们都是强氧化剂,其中高价铂的氟化物六氟化铂(PtF6)的氧化性甚至比氟还要强。巴特列特首先用PtF6与等摩尔氧气在室温条件下混合反应,得到了一种深红色固体,经X射线衍射分析和其他实验确认此化合物的化学式为O2PtF6,其反应方程式为:

O2+PtF6====O2PtF6

这是人类第一次制得O+2的盐,证明PtF6是能够氧化氧分子的强氧化剂。巴特列特头脑机敏,善于联想类比和推理。他考虑到O2的第一电离能是1175.7千焦/摩尔,氙的第一电离能是1175.5千焦/摩尔,比氧分子的第一电离能还略低,既然O2可以被PtF6氧化,那么氙也应能被PtF6氧化。他同时还计算了晶格能,若生成XePtF6,其晶格能只比O2PtF6小41.84千焦/摩尔。这说明XePtF6一旦生成,也应能稳定存在。于是巴特列特根据以上推论,仿照合成O2PtF6的方法,将PtF6的蒸气与等摩尔的氙混合,在室温下竟然轻而易举地得到了一种橙黄色固体XePtF6,其反应的化学方程式为:

Xe+PtF6====XePtF6

该化合物在室温下稳定,其蒸气压很低。它不溶于非极性溶剂四氯化碳,这说明它可能是离子型化合物。它在真空中加热可以升华,遇水则迅速水解,并逸出气体:

2XePtF6+6H2O====2Xe↑+O2↑+2PtO2+12HF

 

这样,具有历史意义的第一个含有化学键的“惰性”气体化合物诞生了,从而很好地证明了巴特列特的正确设想。1962年6月,巴特列特在英国Proccedings of the Chemical Society杂志上发表了一篇重要短文,正式向化学界公布了自己的实验报告,一下震动了整个化学界。持续70年之久的关于稀有气体在化学上完全惰性的传统说法,首先从实践上被推翻了。化学家们开始改变了原来的观念,摘掉了冠以稀有气体头上名不副实的“惰性”的帽子,拆除了人为的樊篱,很快形成了一个合成和研究新的稀有气体化合物的热潮,开辟了一个稀有气体化学的新天地。
认识上的障碍一旦拆除,更多的稀有气体化合物很快被陆续合成出来。就在同年8月,柯拉森(H.H.Classen)在加热加压的情况下,以1∶5体积比混合氙与氟时,直接得到了XeF4,年底又制得了XeF2和XeF6。氙的氟化物的直接合成成功,更加激发了化学家合成稀有气体化合物的热情。在此后不长的时间内,人们相继又合成了一系列不同价态的氙氟化合物、氙氟氧化物、氙氧酸盐等,并对其物理化学性质、分子结构和化学键本质进行了广泛的研究和探讨,从而大大丰富和拓宽了稀有气体化学的研究领域。到1963年初,关于氪和氡的一些化合物也陆续被合成出来了。至今,人们已经合成出了数以百计的稀有气体化合物,但却仅限于原子序数较大的氪、氙、氡,至于原子序数较小的氦、氖,仍未制得它们的化合物,但有人已从理论上预测了合成这些化合物的可能性。1963年,皮门陶(Pimentaw)等人根据HeF2的电子排布与稳定的HF-2离子相似这一点,提出了利用核反应制备HeF2的3种设想:(1)制取TF-2,再利用氚〔3H(T)〕的β衰变合成HeF2:TF-2→HeF2+β;(2)用热中子辐射LiF,生成HeF2;(3)直接用α粒子轰击固态氟而产生HeF2。但毛姆等人则认为,HeF2和HF-2的电子排布虽然相似,但HF-2可以看成是一个H-跟两个F原子作用成键,H-的电离能仅为22.44千焦/摩尔,而He的电离能却高达 801.5千焦/摩尔,因此是否存在HeF2,在理论上是值得怀疑的,氦能否形成化合物,至今仍是个不解之谜


在线客服
联系方式

热线电话 0510-86307432


王经理:13701525515


王经理:18552038787


线